

Human-in-the-Loop Imitation Learning using Remote Teleoperation

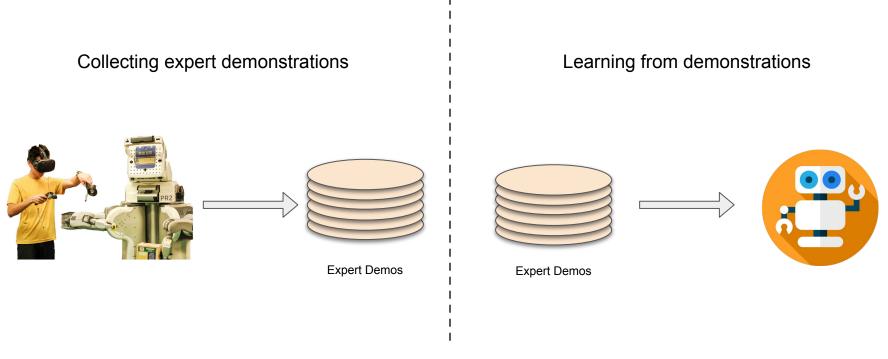
Ajay Mandlekar, Danfei Xu, Roberto Martín-Martín, Yuke Zhu, Li Fei-Fei, Silvio Savarese

Presenter: Rutav Shah

10/18/2022

Imitation learning in Humans

Imitation learning in Robots (Behavior Cloning)



** Typical behavior cloning setup

Zhang, Tianhao, et al. "Deep imitation learning for complex manipulation tasks from virtual reality teleoperation." ICRA. IEEE, 2018.

Covariate shift: The hard regime

- 1. Test distribution is different from training distribution
- 2. Compounding errors
- 3. Imitation Learning

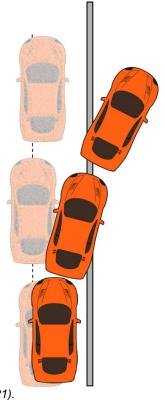
Train/test data are not i.i.d.

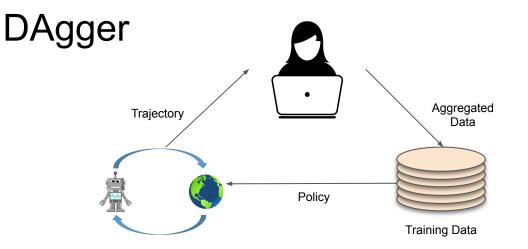
If expected training error is ϵ Expected test error after T decisions is up to

Errors compound

Spencer, Jonathan, et al. "Feedback in imitation learning: The three regimes of covariate shift." arXiv preprint arXiv:2102.02872 (2021).

http://www.cs.toronto.edu/~florian/courses/imitation_learning/lectures/Lecture1.pdf



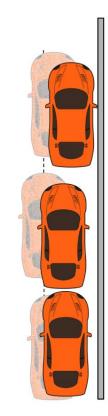


Imitation Learning via DAgger

Train/test data are not i.i.d.

If expected training error on aggr. dataset is $\,\epsilon\,$ Expected test error after T decisions is

Errors do not compound



http://www.cs.toronto.edu/~florian/courses/imitation_learning/lectures/Lecture1.pdf

Problems in DAgger

- 1. Estimating correct actions
- 2. Relabelling entire trajectories

Algorithm 1 DAgger1: $D = \{(s, a)\}$ initial expert demonstrations2: $\theta_1 \leftarrow$ train learner's policy parameters on D3: for i = 1...N do4: Execute learner's policy π_{θ_i} , get visited states $S_{\theta_i} = \{s_0, ..., s_T\}$ 5: Query the expert at those states to get actions $A = \{a_0, ..., a_T\}$ 6: Aggregate dataset $D = D \cup \{(s, a) \mid s \in S_{\theta_i}, a \in A\}$ 7: Train learner's policy $\pi_{\theta_{i+1}}$ on dataset D8: Return one of the policies π_{θ_i} that performs best on validation set

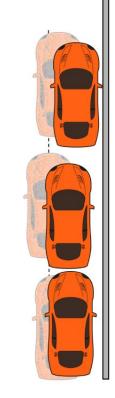
- 3. A 30-second manipulation task with 20hz robot control
 - a. 30x20 = 600 state relabelling per trajectory
- 4. Unsafe

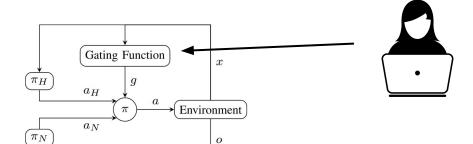
Ross, Stéphane, Geoffrey Gordon, and Drew Bagnell. "A reduction of imitation learning and structured prediction to no-regret online learning." Proceedings of the fourteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 2011

CS391R: Robot Learning (Fall 2022)

Kelly, Michael, et al. "HG-DAgger: Interactive imitation learning with human experts." 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.

- Intervene when necessary
- Significantly Reduces human relabelling effort





0

HG-DAgger

Problems in HG-DAgger

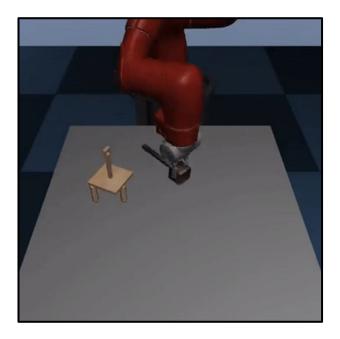
- 1. HG-DAgger throws away the robot sampled trajectories
- 2. Behavior of the agent changes significantly after training on the new dataset

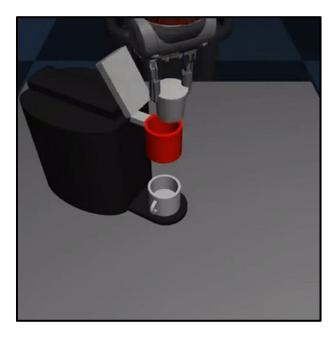
Kelly, Michael, et al. "HG-DAgger: Interactive imitation learning with human experts." 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.

3. Limited to driving scenarios

Algor	Algorithm 1 HG-DAGGER		
1: p	1: procedure HG-DAGGER $(\pi_H, \pi_{N_1}, \mathcal{D}_{BC})$		
2:	$\mathcal{D} \leftarrow \mathcal{D}_{BC}$		
3:	$\mathcal{I} \leftarrow []$		
4:	for epoch $i = 1: K$		
5:	for rollout $j = 1 : M$		
6:	for timestep $t \in T$ of rollout j		
7:	if expert has control		
8:	record expert labels into \mathcal{D}_j		
9:	if expert is taking control		
10:	record doubt into I_j		
1:	$\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_j$		
12:	append \mathcal{I}_j to \mathcal{I}		
13:	train $\pi_{N_{i+1}}$ on \mathcal{D}		
14:	$\tau \leftarrow f(\mathcal{I})$		
15:	return $\pi_{N_{K+1}}, au$		

Robot manipulation!

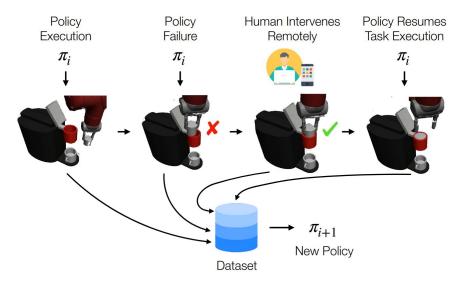




• Bottleneck regions are much more difficult to traverse

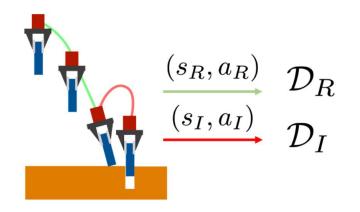
Proposed Idea

The human intervened trajectories are informative about both *where* task bottlenecks occur and *how* to traverse them.



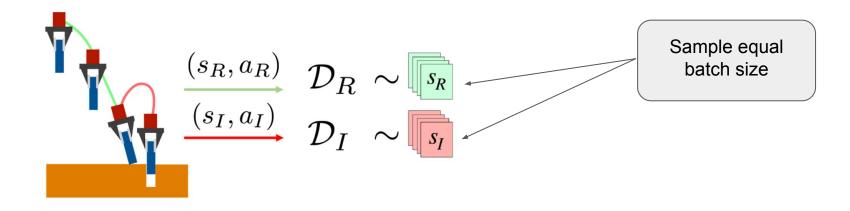
Don't throw away any information!

Methodology - Intervention Weighted Regression (IWR)



Red:Human intervened dataGreen:Robot sampled trajectory

Methodology - Intervention Weighted Regression (IWR)



Red:Human intervened dataGreen:Robot sampled trajectory

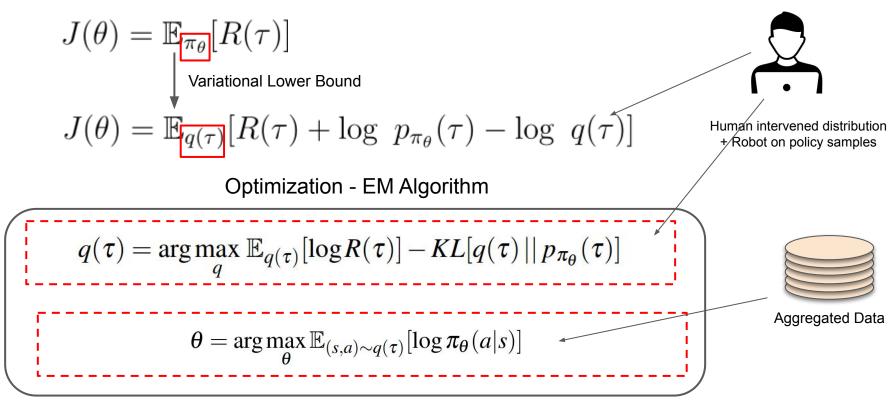
Methodology - Intervention Weighted Regression (IWR)

$$\begin{array}{c} \overbrace{(s_R, a_R)} \\ \overbrace{(s_I, a_I)} \\ \end{array} \begin{array}{c} \mathcal{D}_R \\ \mathcal{D}_I \\ \mathcal{D}_I \end{array} \begin{array}{c} \mathcal{T}_R \\ \mathcal{T}_$$

Why equal batch size?

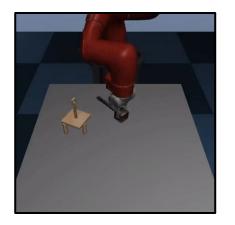
- equal size batches re-weights the data distribution (??)
 - Intervention actions demonstrate bottleneck traversal
 - Robot sampled data keeps the policy close to previous policy

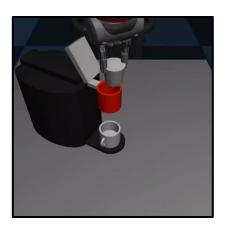
Methodology - Mathematical Grounding



A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess, and M. Riedmiller, "Maximum a posteriori policy optimisation", arXiv preprint arXiv:1806.06920, 2018.

Experimental Setup





Remote Teleoperation for Collecting Interventions

Tested on simulated environment

Remote RoboTurk system

Results

TABLE I: Single-Operator Results on the Threading Task

Model	Round 1	Round 2	Final
Base	-	-	58.0 ± 9.2
Full Demos	-	-	76.7 ± 2.3
HG-DAGGER	57.3 ± 9.5	62.7 ± 5.0	75.3 ± 8.1
IWR-NB	76.0 ± 6.9	72.0 ± 3.5	74.7 ± 1.2
IWR (Ours)	84.0 ± 5.3	90.7 ± 3.1	87.3 ± 5.0

IWR (Ours)	Samples equal batch size from human and robot data
IWR-NB	Mixes both the robot and human data, then sample
HG-Dagger	Throws away robot samples from human intervened traj
Full Demos	No human intervention

Results

• Train policy from scratch using the data collected by each method

TABLE III: Single-Operator Comparison across Final Threading Datasets Collected by Each Method

	Final Dataset		
Model	HG-DAGGER	IWR-NB	IWR (Ours)
HG-DAGGER	75.3 ± 8.1	72.0 ± 5.3	81.3 ± 4.2
IWR-NB	80.0 ± 1.4	74.7 ± 1.2	86.0 ± 4.0
IWR (Ours)	87.3 ± 6.4	84.7 ± 6.4	87.3 ± 5.0

TABLE IV: Multi-Operator Comparison across Final Coffee Machine Datasets Collected by Each Method

	Final Dataset	
Model	HG-DAGGER	IWR (Ours)
HG-DAGGER	69.6 ± 10.1	71.6 ± 16.1
IWR (Ours)	85.6 ± 6.5	87.5 ± 9.4

IWR (Ours)	Samples equal batch size from human and robot data
IWR-NB	Mixes both the robot and human data, then sample
HG-Dagger	Throws away robot samples from human intervened traj
Full Demos	No human intervention

Results

• Average results across three different operators

TABLE II: Multi-Operator Results on the Coffee Machine Task

Model	Round 1	Round 2	Final
Base	-	-	52.0 ± 3.5
Full Demos		-	64.9 ± 8.3
HG-DAGGER	70.2 ± 15.3	71.1 ± 9.7	69.6 ± 10.1
IWR (Ours)	79.6 ± 8.9	79.5 ± 11.7	87.5 ± 9.4

IWR (Ours)	Samples equal batch size from human and robot data
IWR-NB	Mixes both the robot and human data, then sample
HG-Dagger	Throws away robot samples from human intervened traj
Full Demos	No human intervention

Critiques

- 1. Results only on simulator not on real world tasks! **Covid :(**
- 2. Not convinced that *where* and *how* the bottleneck occurs has been fully addressed
- 3. No information about the percentage of times human had to intervene per trajectory per round
- 4. What if human makes an error while executing the task? Robustness to such errors?
- 5. **Full demos** is not a convincing baseline
 - a. **Full demos** has (**30 x traj_len**) human samples
 - b. **IWR(Ours)** has (**30 x traj_len + no. of intervention**) human samples
- 6. The comparisons are a bit inconsistent for e.g **IWR(NB)** is not compared with in Table 2 and Table 4. Best guess: Too much human annotation per seed per algorithm.
- 7. No access to codebase or data <u>https://sites.google.com/stanford.edu/iwr</u>

Summary

- Learning from human demonstrations
 - Effective
 - Human centric world
- Human in the loop: Tackles covariate shift while minimizing human effort
- Key Takeaway: The human intervened trajectories are informative about both *where* task bottlenecks occur and *how* to traverse them.
- Demonstrates strong results on simulated environments

Extended Readings

- 1. Classical: <u>Navlab 1 (1986-1989)</u>; <u>Navlab 2 + ALVINN (1989-1993)</u>
- 2. DAgger: A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning
- 3. <u>Feedback in Imitation Learning: The Three Regimes of Covariate Shift</u> Categorizes the compounding error problem in three categories and possible solution in each one of them.
- 4. <u>DART: Noise Injection for Robust Imitation Learning</u> Injects noise while training instead of intervention.
- 5. <u>Comparing Human-Centric and Robot-Centric Sampling for Robot Deep Learning from</u> <u>Demonstrations</u> - Compares human demonstrations and data collected in DAgger style.
- 6. <u>Learning from Interventions Human-robot interaction as both explicit and implicit feedback</u> Similar idea of using interventions but instead learning constraints on the value function.
- Robot Learning on the Job: Human-in-the-Loop Manipulation and Learning During Deployment (ICRA 2023) - Makes better use of the interventions made by humans
- 8. <u>Imitation learning: A series of Deep Dives</u> Short Youtube series by Sanjiban Choudhary

Questions?

Open Questions

- 1. Is human-in-the-loop really scalable?
- 2. Can safety be learned from more sparse (or no) feedback from human?
- 3. Threat to optimality by using behavior cloning and/or human-in-the-loop?